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8

Fourier series and systems of orthogonal functions

8.1 Introduction

In chapter 4 we introduced Taylor’s series, a representation in which the function is

expressed in terms of the value of the function and all its derivatives at the point of

expansion. In general such series are useful only close to the point of expansion, and

far from here it is usually the case that very many terms of the series are needed to give

a good approximation. An example of this behaviour is shown in figure 8.1, where we

compare various Taylor polynomials of sin x about x = 0 over the range 0 < x < 2π.

(15)

(11)

(9)

–2

–1

0

1
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1 2 3 4 5 6x

Figure 8.1 Taylor polynomials of sin x with degree 9, 11 and 15.

It is seen that many terms are needed to obtain a good approximation at x = 2π.

Such behaviour should not be surprising, for the nth term of the Taylor’s series is

(−1)nx2n+1/(2n + 1)! and at x = 2π this is larger than 1 if n ≤ 6. Some values of the

magnitude of this coefficient for various n at x = 2π and 3π are shown in figure 8.2.

n

π3π2
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Figure 8.2 Dependence of x2n+1/(2n+ 1)!, at x = 2π and 3π,

upon n.
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268 Fourier series and systems of orthogonal functions

A Taylor’s series approximation is most accurate near the point of expansion, x = a,

and its accuracy generally decreases as |x− a| increases, so this type of approximation

suffers from the defect that it is not usually uniformly accurate over the required range

of x, although the Padé approximant of the Taylor’s series, introduced in chapter 6,

can often provide improved accuracy.

Fourier series eliminate these problems by approximating functions in a quite different

manner. The essential idea is very simple. Suppose we have a set of functions φk(x),

k = 1, 2, . . . , (which may be complex) defined on some interval a ≤ x ≤ b; these

could be, for instance, the polynomials φk(x) = xk , or the trigonometric functions

φk(x) = sin kx. Then we attempt to approximate a function f(x) as the sum

f(x) ' fN(x) =

N∑
k=1

ckφk(x)

by choosing the coefficients ck to minimise the mean square difference

EN =

∫ b

a

dx

∣∣∣∣∣f(x) −
N∑
k=1

ckφk(x)

∣∣∣∣∣
2

.

This is a more democratic method of approximation because no point in the interval is

picked out for favoured treatment, as in a Taylor’s series. In order to put this idea into

practice we need to know how to choose the functions φk(x) and to understand how

the approximation converges with increasing N. For this it is necessary to introduce

the notion of a complete set of functions together with some connected technical

details.

Exercise 8.1

Use Stirling’s approximation to show that the modulus of the nth term of the Taylor’s series

of sin x, x2n+1/(2n+ 1)!, is small for n > ex/2, and that for large |x| the largest term in the

Taylor’s series has a magnitude of about ex/
√

2πx.

In addition show that with arithmetic accurate to N significant figures the series approx-

imation for sin x can be used directly to find values of sin x accurate to M(< N) significant

figures only for x < (N −M) ln 10. Check this behaviour using Maple.

Exercise 8.2

This exercise is about the approximation of sin x on the interval (0, π) using the functions

φ1 = 1, φ2 = x and φ3 = x2.

Use Maple to evaluate the integral

E(a, b, c) =

∫ π

0

dx
(
a+ bx+ cx2 − sin x

)2

to form the function E(a, b, c) which is quadratic in a, b and c. Find the position of the

minimum of this function by solving the three equations ∂E
∂a

= 0, ∂E
∂b

= 0 and ∂E
∂c

= 0 for a,

b and c. Hence show that

sin x ' 12
π2 − 10

π3
− 60

π2 − 12

π5
x(π − x), 0 ≤ x ≤ π.
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Compare your approximation graphically with the exact function and various Taylor

polynomials.

Note that with Maple it is relatively easy to include higher order polynomials in this

expansion: it is worth exploring the effect of doing this.

8.2 Orthogonal systems of functions

Here we consider complex functions of the real variable x on an interval a ≤ x ≤ b.

The inner product of two such functions f(x) and g(x) is denoted by (f, g) and is defined

by the integral

(f, g) =

∫ b

a

dx f∗(x)g(x), (8.1)

where f∗ denotes the complex conjugate of f; note that (g, f) = (f, g)∗. The inner

product of a function with itself is real, positive and
√

(f, f) is named the norm. A

function whose norm is unity is said to be normalised.

Two functions f and g are orthogonal if their inner product is zero, (f, g) = 0. A

system of normalised functions φk(x), k = 1, 2, . . . , every pair of which is orthogonal is

named an orthogonal system. If, in addition, each function is normalised, so

(φr, φs) = δrs =

{
1, r = s,

0, r 6= s,

the system is called an orthonormal system. The symbol δrs introduced here is named

the Kronecker delta. An example of a real orthonormal system on the interval (0, 2π),

or more generally any interval of length 2π, is the set of functions

1√
2π
,

cos x√
π
,

cos 2x√
π
, . . . ,

cos kx√
π
, . . . .

On the same interval the set of complex functions

φk(x) =
eikx√
2π
, k = 0,±1, ±2, . . .

is also an orthonormal system.

Exercise 8.3
Find the appropriate value of the constant A that makes the norm of each of the functions

φ1(x) = Ax, φ2(x) = A(3x2 − 1), φ3(x) = Ax(5x2 − 3)

on the intervals −1 ≤ x ≤ 1 and 0 ≤ x ≤ 1, unity. For each interval determine the matrix

of inner products (φi, φj) for i, j = 1, 2, 3.

Exercise 8.4
By evaluating (h, h), where h(x) = (f, g)f(x) − (f, f)g(x), and using the fact that (h, h) ≥ 0,

prove the Schwarz inequality,

|(f, g)|2 ≤ (f, f)(g, g), (8.2)
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Exercise 8.5

Show that the functions

φk(x) =

√
2

α
sin
(

2π

α
kx

)
, k = 1, 2, . . . ,

are orthogonal on any interval of length α.

8.3 Expansions in terms of orthonormal functions

Suppose that φk(x), k = 1, 2, . . . , is a system of orthonormal functions on the interval

a ≤ x ≤ b, then we expand a given real function f(x) in terms of these functions by

writing

f(x) ' fN(x) =

N∑
k=1

ckφk(x), a ≤ x ≤ b, (8.3)

and choose the N coefficients ck — which may be complex — to minimise the square

of the norm of (fN − f). That is, we minimise the function

F(c) =

∫ b

a

dx

∣∣∣∣∣
N∑
k=1

ckφk(x) − f(x)

∣∣∣∣∣
2

=

N∑
k=1

|ck − (φk, f)|2 −
N∑
k=1

|(φk, f)|2 + (f, f). (8.4)

It follows from this last expression that F(c) has its only minimum when the first term

is made zero by choosing

cj =
(
φj, f

)
, j = 1, 2, . . . , N. (8.5)

The numbers cj = (φj, f) are the expansion coefficients of f with respect to the

orthogonal system {φ1, φ2, . . .}. This type of approximation is called an approximation

in the mean.

An important consequence follows from the trivial observation that

∫ b

a

dx

∣∣∣∣∣
N∑
k=1

ckφk(x) − f(x)

∣∣∣∣∣
2

≥ 0,

and by expanding the integrand and integrating term by term to give

N∑
k=1

|ck|2 −
N∑
k=1

[
ck(φk, f)

∗ + c∗
k(φk, f)

]
+ (f, f) ≥ 0, for any ck.

Hence
N∑
k=1

|ck|2 ≤ (f, f) if ck = (φk, f)
[
and (φk, φk) = 1

]
.
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Since (f, f) is independent of N it follows that

∞∑
k=1

|ck|2 ≤ (f, f), Bessel’s inequality. (8.6)

Bessel’s inequality is true for every orthogonal system: it shows that the sum of squares

of the coefficients always converges, provided the norm of f exists. From this inequality

it follows from section 4.3.1 that ck → 0 as k → ∞.

Exercise 8.6

Derive equation 8.4.

Exercise 8.7

Equations 8.5, for the expansion coefficients, and Bessel’s inequality, equation 8.6, were

both derived for an orthonormal system for which (φj, φk) = δjk . Show that if the φk are

orthogonal, but not necessarily orthonormal, these relations become

cj =
(φj, f)

(φj, φj)
and

∞∑
k=1

|(φk, f)|2
(φk, φk)

≤ (f, f).

8.4 Complete systems

A complete orthogonal system, φk(x), k = 1, 2, . . . , has the property that any function,

taken from a given particular set of functions, can be approximated in the mean to

any desired accuracy by choosing N large enough. In other words, for any ε > 0, no

matter how small, we can find an N(ε) such that for M > N(ε)

∫ b

a

dx

∣∣∣∣∣f(x) −
M∑
k=1

ckφk(x)

∣∣∣∣∣
2

< ε, where ck =
(φk, f)

(φk, φk)
. (8.7)

That is, the mean square error can be made arbitrarily small. Notice that this definition

needs the function f to belong to a given set, normally the set of integrable functions.

For a complete orthogonal system it can be proved that Bessel’s inequality becomes

the equality

(f, f) =

∞∑
k=1

(φk, φk) |ck|2 =

∞∑
k=1

(φk, f)
2

(φk, φk)
, (8.8)

and this is known as the completeness relation. It may also be shown that a sufficient

condition for an orthogonal system to be complete is that this completeness relation

holds; a proof of this statement is given in Courant and Hilbert (1965, page 52).

There are three points worthy of note.

• First, the functions f(x) being approximated need not be continuous or differentiable

at every point in the interval of approximation, as required by Taylor’s series.
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• Second, the fact that

lim
N→∞

∫ b

a

dx

∣∣∣∣∣f(x) −
N∑
k=1

ckφk(x)

∣∣∣∣∣
2

= 0, ck =
(φk, f)

(φk, φk)
, (8.9)

does not imply pointwise convergence, that is,

lim
N→∞

N∑
k=1

ckφk(x) = f(x), a ≤ x ≤ b. (8.10)

If the limit 8.9 holds we say that the sequence of functions

fN(x) =

N∑
k=1

ckφk(x)

converge to f(x) in the mean. If the limit 8.10 holds fN(x) converges pointwise to

f(x), section 4.6. If, however, the series fN(x) converges uniformly then convergence

in the mean implies pointwise convergence.

• Third, if two piecewise continuous functions have the same expansion coefficients

with respect to a complete system of functions then it may be shown that they are

identical, see for example Courant and Hilbert (1965, page 54).

Finally, we note that systems of functions can be complete even if they are not

orthogonal. Examples of such complete systems are the polynomials φk(x) = xk ,

1, x, x2, . . . , xn, . . . ,

which form a complete system in any closed interval a ≤ x ≤ b, for the approximation

theorem of Weierstrass states that any function continuous in the interval a ≤ x ≤ b

may be approximated uniformly by polynomials in this interval. This theorem asserts

uniform convergence, not just convergence in the mean, but restricts the class of

functions to be continuous. A proof may be found in Powell (1981, chapter 6).

Another set of functions is

1

x+ λ1
,

1

x+ λ2
, . . . ,

1

x+ λn
, . . . ,

where λ1, λ2, . . . , λn, . . . are positive numbers which tend to infinity with increasing n;

this set is complete in every finite positive interval. An example of the use of these

functions is given in exercise 8.28 (page 294), and another set of complete functions is

given in exercise 8.41 (page 298).

In this and the preceding sections we have introduced the ideas of:

• inner product and norm;

• orthogonal functions;

• complete orthonormal systems.

You should ensure that you understand these ideas before passing to the next section.
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8.5 Fourier series

In modern mathematics a Fourier series is an expansion of a function in terms of a set

of complete functions. Originally and in many modern texts the same name is used in

the more restrictive sense to mean an expansion in terms of the trigonometric functions

1, cos x, sin x, cos 2x, sin 2x, . . . , cos nx, sin nx, . . . (8.11)

or their complex equivalents

φk = e−ikx, k = 0, ±1, ±2, . . . , (8.12)

which are complete and orthogonal on the interval (−π, π), or any interval of length

2π; the interval (0, 2π) is often used. Series of this type are named trigonometric series

if it is necessary to distinguish them from more general Fourier series: in the remainder

of this chapter we treat the two names as synonyms. Trigonometric series are one

of the simplest of this class of Fourier expansions — because they involve the well

understood trigonometric functions — and have very many applications.

Any sufficiently well behaved function f(x) may be approximated by the trigonometric

series

F(x) =

∞∑
k=−∞

cke
−ikx, ck =

(φk, f)

(φk, φk)
=

1

2π

∫ π

−π
dx eikxf(x), (8.13)

where we have used the first result of exercise 8.7. We restrict our attention to real

functions, in which case c0 is real, and is just the mean value of the function f(x), and

c−k = c∗
k . The constants ck are named the Fourier coefficients.

The Fourier series F(x) is often written in the real form

F(x) =
1

2
a0 +

∞∑
k=1

ak cos kx+

∞∑
k=1

bk sin kx, (8.14)

where ak = 2<(ck), bk = 2=(ck), or

a0 =
1

π

∫ π

−π
dx f(x),

(
ak
bk

)
=

1

π

∫ π

−π
dx

(
cos kx

sin kx

)
f(x), k = 1, 2, . . . . (8.15)

The constants ak and bk are also called Fourier coefficients. It is often more efficient

and elegant to use the complex form of the Fourier series, though in special cases, see

for instance exercise 8.10, the real form is more convenient.

One of the main questions to be settled is how the Fourier series F(x) relates to the

original function f(x). This relation is given by Fourier’s theorem, discussed next, but

before you read this it will be helpful to do the following two exercises.

Exercise 8.8
Show that the Fourier series of the function f(x) = |x| on the interval −π ≤ x ≤ π is

F(x) =
π

2
− 4

π

∞∑
k=1

cos(2k − 1)x

(2k − 1)2
.

Use Maple to compare graphically the Nth partial sum, FN(x), of the above series with f(x)

for N = 1, 2, 6 and 10 over the range −2π ≤ x ≤ 2π.
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Further, show that the mean square error, defined in equation 8.7, of the Nth partial

sum decreases as N−3. Show also that

FN(0) =
1

πN
+ O(N−2).

In this example we notice that even the first two terms of the Fourier series provide a

reasonable approximation to |x| for −π ≤ x ≤ π, and for larger values of N the graphs

of FN(x) and |x| are indistinguishable over most of the range. A close inspection of the

graphs near x = 0, where f has no derivative, shows that here more terms are needed

to obtain the same degree of accuracy as elsewhere.

For |x| > π, f(x) and F(x) are different. This is not surprising as F(x) is a periodic

function with period π — generally this type of Fourier series is 2π-periodic but here

F(x) is even about x = π.

Finally, note that for large k the Fourier coefficients ck are O(k−2); we shall see that

this behaviour is partly due to f(x) being even about x = 0.

Now consider a function which is piecewise smooth on (−π, π) and discontinuous at

x = 0.

Exercise 8.9
Show that the Fourier series of the function

f(x) =

{
x/π, −π < x < 0,

1 − x/π, 0 ≤ x < π,

is

F(x) =
4

π2

∞∑
k=1

cos(2k − 1)x

(2k − 1)2
+

2

π

∞∑
k=1

sin(2k − 1)x

2k − 1
.

Use Maple to compare graphically the Nth partial sum of this series with f(x) for N = 1, 4,

10 and 20. Make your comparisons over the interval (−2π, 2π) and investigate the behaviour

of the partial sums of the Fourier series in the range −0.1 < x < 0.1 in more detail.

Find the values of f(0) and f(±π) and show that

F(0) =
1

2
and F(±π) = −1

2
.

Hint: remember that the piecewise function can be defined in Maple using the command

x->piecewise(x<0, x/Pi, 1-x/Pi);.

In this comparison there are four points to notice:

• First, observe that for −π < x < π, but x not too near 0 or ±π, FN(x) is close to

f(x) but that F(x) 6= f(x) at x = 0 and ±π.

• Second, as in the previous example, F and f are different for |x| > π because F(x)

is a periodic extension of f(x).

• Third, in this case the convergence of the partial sums to f(x) is slower because now

ck = O(k−1); again this behaviour is due to the nature of f(x), as will be seen later.

• Finally, we see that for x ' 0, FN(x) oscillates about f(x) with a period that

decreases with increasing N but with an amplitude that does not decrease: this

important phenomenon is due to the discontinuity in f(x) at x = 0 and will be

discussed in section 8.11.
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Some of the observations made above are summarised in the following theorem, which

gives sufficient conditions for the Fourier series of a function to coincide with the

function.

Fourier’s theorem

Let f(x) be a function given on the interval −π ≤ x < π and defined for all

other values of x by the equation

f(x+ 2π) = f(x)

so that f(x) is 2π-periodic. Assume that
∫ π

−π dx f(x) exists and that the complex

Fourier coefficients ck are defined by the equations

ck =
1

2π

∫ π

−π
dx f(x)eikx, k = 0, ±1, ±2, . . . ,

then if −π < a ≤ x ≤ b < π and if in this interval |f(x)| is bounded, the series

F(x) =

∞∑
k=−∞

cke
−ikx (8.16)

is convergent and has the value

F(x) =
1

2

(
lim
ε→0+

f(x+ ε) + lim
ε→0+

f(x− ε)

)
. (8.17)

If f(x) is continuous at a point x = w the limit reduces to F(w) = f(w).

The conditions assumed here are normally met by functions found in practical appli-

cations. In the example treated in exercise 8.9 we have, at x = 0,

lim
ε→0+

f(ε) = 1 and lim
ε→0+

f(−ε) = 0,

so equation 8.17 shows that the Fourier series converges to 1
2

at x = 0, as found in the

exercise.

Fourier’s theorem gives the general relation between the Fourier series and f(x). In

addition it can be shown that if the Fourier coefficients have bounded variation and

|ck| → 0 as k → ∞ the Fourier series converges uniformly in the interval 0 < |x| < π.

At x = 0 care is sometimes needed as the real and imaginary parts of the series behave

differently; convergence of the real part depends upon the convergence of the sum

c0 + c1 + c2 + · · ·, whereas the imaginary part is zero, since c0 is real for real functions

(Zygmund, 1990, chapter 1).

The completeness relation, equation 8.8 (page 271), modified slightly because the

functions used here are not normalised, gives the identity

∞∑
k=−∞

|ck|2 =
1

2π

∫ π

−π
dx f(x)2, (8.18)

or, for the real form of the Fourier series,

1

2
a2

0 +

∞∑
k=1

(
a2
k + b2

k

)
=

1

π

∫ π

−π
dx f(x)2. (8.19)
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These relations are known as Parseval’s theorem. It follows from this relation that if

the integral exists |ck| tends to zero faster than |k|−1/2 as |k| → ∞.

There is also a converse of Parseval’s theroem: the Riesz–Fischer theorem, which

states that if numbers ck exist such that the sum in equation 8.18 exists then the series

defined in equation 8.13 (page 273), is the Fourier series of a square integrable function.

A proof of this theorem can be found in Zygmund (1990, chapter 4).

In the appendix to this chapter some common Fourier series are listed.

Exercise 8.10
Show that if f(x) is a real function even about x = 0 then its Fourier series, on the interval

(−π, π), contains only cosine terms, but that if f(x) is an odd function its Fourier series

contains only sine terms.

Exercise 8.11
Let F(x) be the Fourier series of the function f(x) = x2 on the interval 0 ≤ x ≤ 2π. Sketch

the graph of F(x) in the interval (−2π, 4π). What are the values of F(2nπ) for integer n?

Note, you are not expected to find an explicit form for F(x).

Exercise 8.12
Use the relation

ln
(

1

1 − z

)
= z +

1

2
z2 +

1

3
z3 + · · · +

1

n
zn + · · · , |z| ≤ 1, z 6= 1,

= ln

∣∣∣ 1

1 − z

∣∣∣− i arg(1 − z)

to show that for −π ≤ θ < π,

1

2
ln
(

1

1 + r2 − 2r cos θ

)
=

∞∑
k=1

rk

k
cos kθ, r ≤ 1,

tan−1

(
r sin θ

1 − r cos θ

)
=

∞∑
k=1

rk

k
sin kθ, r ≤ 1,

and that

∞∑
k=1

cos kθ

k
= − ln

∣∣∣∣2 sin
θ

2

∣∣∣∣ , ∞∑
k=1

sin kθ

k
=

{
1
2
(π − θ), 0 < θ < π,

− 1
2
(π + θ), −π < θ < 0.

Observe that for r < 1 the Fourier coefficients tend to zero faster than exponentially with

increasing k, in contrast to the Fourier coefficients obtained in exercises 8.8 and 8.9, for

example.

8.6 Addition and multiplication of Fourier series

The Fourier coefficients of the sum and difference of two functions are given by the

sum and difference of the constituent coefficients, as would be expected. Thus if

f1(x) =

∞∑
k=−∞

cke
−ikx, and f2(x) =

∞∑
k=−∞

dke
−ikx, (8.20)
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then, for any constants a and b,

af1(x) + bf2(x) =

∞∑
k=−∞

(ack + bdk) e
−ikx.

The Fourier series of the product of the two functions is, however, more complicated;

suppose that

f1(x)f2(x) =

∞∑
k=−∞

Dke
−ikx, (8.21)

then if the Fourier series for f1 and f2 are absolutely convergent we also have

f1(x)f2(x) =

∞∑
k=−∞

∞∑
l=−∞

ckdle
−i(k+l)x,

=

∞∑
p=−∞

e−ipx
∞∑

k=−∞
ckdp−k. (8.22)

On comparing equations 8.21 and 8.22 we see that the nth Fourier coefficient of the

product is

Dn =

∞∑
k=−∞

ckdn−k =

∞∑
k=−∞

cn−kdk. (8.23)

Exercise 8.13
Show that the nth Fourier coefficient of f1(x)

2, where the Fourier series of f1 is given in

equation 8.20, is
∞∑

k=−∞
ckcn−k.

Use the Fourier series for x to deduce that

∞∑
k = −∞
k 6= 0, n

1

k(k − n)
=

2

n2
.

Another consequence of equation 8.22 is the addition formula for Bessel functions,

exercise 8.31 (page 295).

8.7 The behaviour of Fourier coefficients

In general it is difficult to make a priori estimates of the asymptotic behaviour of

Fourier components, although we know from Bessel’s inequality that limk→∞ ck = 0,

and that |ck| must decay to zero faster than k−1/2 if f(x) is square integrable. For the

function treated in exercise 8.8 we have ck = O(k−2), and in exercise 8.9 ck = O(k−1);

exercise 8.12 provides an example for which ck → 0 exponentially. It is clearly important

to know how rapidly |ck| decreases to zero because this determines the number of terms

needed to achieve a given accuracy. Here we present a few elementary observations.
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Consider a function having N continuous derivatives on (−π, π). The integral for the

Fourier components, equation 8.13 (page 273), can be integrated by parts N times; the

first two integrations give

ck =
(−1)k

2πik

[
f(π) − f(−π)

]− 1

2πik

∫ π

−π
dx f′(x)eikx (8.24)

=
(−1)k

2πik

[
f(π) − f(−π)

]
+

(−1)k

2πk2

[
f′(π) − f′(−π)

]− 1

2πk2

∫ π

−π
dx f′′(x)eikx.

Clearly this process can be continued until the Nth differential appears in the integral,

but useful information can be gleaned from these expressions.

If f(x) is even, f(π) = f(−π) and it follows that ck = O(k−2). The same result holds

if f is not even but f(π) = f(−π). If the function is odd then ck = O(k−1), unless

f(π) = 0.

If f(x) is 2π-periodic then f(r)(π) = f(r)(−π), r = 0, 1, . . . , N, and after further

integration by parts we obtain

ck =
1

2π

(
i

k

)N ∫ π

−π
dx f(N)(x)eikx,

since all the boundary terms are now zero. But∣∣∣∣
∫ π

−π
dx f(N)(x)eikx

∣∣∣∣ ≤
∣∣∣∣
∫ π

−π
dx f(N)(x)

∣∣∣∣ ,
so ck = O(k−N). If f(x) is periodic and all derivatives exist then ck will tend to zero

faster than any power of 1/k, for instance as e−k , as in the example of exercise 8.12.

One important consequence of this last result is that the numerical estimate of the

mean of a sufficiently well behaved periodic function over a period obtained using N

equally spaced points converges faster than any power of N−1; this is faster than most

other numerical procedures. We prove this using the Fourier series of the function:

suppose, for simplicity, that the function is 2π-periodic so possesses the Fourier series

f(x) =

∞∑
k=−∞

Cke
−ikx,

where the coefficients Ck are unknown and C0 is the required mean value of f(x).

The mean of f(x) over (0, 2π) can be approximated by the sum over N equally spaced

points,

1

2π

∫ 2π

0

dx f(x) ' 1

N

N∑
j=1

f

(
2πj

N

)
. (8.25)

Using the Fourier series of f(x) the sum can be written in the alternative form

N∑
j=1

f

(
2πj

N

)
=

N∑
j=1

∞∑
k=−∞

Ck exp

(
−i2πkj

N

)

=

∞∑
k=−∞

Ck

N∑
j=1

exp

(
−i2πkj

N

)
.
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But we have the relation

N∑
j=1

e−izj = R(z) exp
(−i(N + 1)z/2

)
, R(z) =

sin(Nz/2)

sin(z/2)
,

which follows because the left hand side is a geometric series. Now z = 2πk/N, and

R

(
2πk

N

)
=

sin πk

sin(πk/N)
.

This is zero unless k = Np for some integer p, that is z = 2πp, in which case we can

find the value of R by taking the limit, or more easily by noting that the original sum

becomes

N∑
j=1

exp

(
−i2πkj

N

)
=

N∑
j=1

exp (−i2πpj) = N, k = Np.

Thus

1

N

N∑
j=1

f

(
2πj

N

)
= C0 +

∞∑
p = −∞
p 6= 0

CNp. (8.26)

If all derivatives of f exist then, since f(x) is periodic, |CNp| → 0 faster than any power

of (Np)−1, so that the numerical estimate of the mean on the left hand side converges

to C0 faster than any power of N−1. This result is of practical value.

The ideas presented in this section can sometimes be put to good use in speeding

the convergence of Fourier series. Consider a function f(x) continuous on −π < x ≤ π

but with f(π) 6= f(−π), so its Fourier coefficients ck = O(k−1), as k → ∞. Define a new

function g(x) = f(x) − αx with the constant α chosen to make g(π) = g(−π), that is

α =
1

2π
(f(π) − f(−π)),

so Fourier components of g behave as O(k−2).

As an example consider the odd function f(x) = sin
√

2x with the Fourier series

sin
√

2x =

∞∑
k=1

bk sin kx, (8.27)

where

bk =
2k(−1)k−1 sin π

√
2

π(k2 − 2)
=

2(−1)k−1

kπ
sin π

√
2 + O(k−2).

In this case α = (sin π
√

2)/π and using the Fourier series of x, given in the appendix

of this chapter, we see that the Fourier coefficients, Gk , of g(x) = f(x) − αx, are

Gk = bk − 2(−1)k−1

kπ
sin π

√
2 =

4

π

(−1)k−1

k(k2 − 2)
sin π

√
2 = O(k−3).
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Hence for −π ≤ x ≤ π we may write

f(x) = sin
√

2x =
x

π
sin π

√
2 +

4

π
sin π

√
2

∞∑
k=1

(−1)k−1

k(k2 − 2)
sin kx. (8.28)

In the following two figures we compare the function, f(x) = sin
√

2x, with ten terms

of the original Fourier series 8.27, on the left, and just two terms of the modified

series 8.28, on the right; in the second case with more terms the two functions are

practically indistinguishable. The main point to notice is that by removing the discon-

tinuity in the Fourier series at x = ±π a far more rapidly converging approximation

has been obtained that also converges pointwise over the whole range.

It is clear that further corrections that produce a more rapidly converging Fourier

series may be added. This idea is developed further by Lanczos (1966, section 16).
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Figure 8.3 Comparison of f(x) with ten
terms of the original Fourier series 8.27.
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Figure 8.4 Comparison of f(x) with two
terms of the modified Fourier series 8.28.

Exercise 8.14

Show that the Fourier series of f(x) = sinh x on (−π, π) is

sinh x =
2 sinh π

π

∞∑
k=1

(−1)k−1k

1 + k2
sin kx.

Show further that

sinh x =
x

π
sinh π − 2

sinh π

π

∞∑
k=1

(−1)k−1

k(1 + k2)
sin kx.

Use Maple to compare various partial sums of these two series with sinh x and hence

demonstrate that the latter is a more useful approximation.

8.8 Differentiation and integration of Fourier series

The Fourier series of a function f(x) is uniformly convergent in an interval (a, b), where

−π < a ≤ x ≤ b < π, if f(x) is continuous in this interval. Then the term by term

differentiation and integration of the series are respectively the differential and integral
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of f(x). Thus if

f(x) =

∞∑
k=−∞

cke
−ikx (8.29)

is uniformly convergent for a ≤ x ≤ b, then

df

dx
= −i

∞∑
k=−∞

kcke
−ikx, (8.30)

and the integral is ∫
dx f(x) = A+ xc0 + i

∞∑
k = −∞
k 6= 0

ck

k
e−ikx,

where A is the constant of integration and the sum does not include the k = 0 term.

The expressions for the differential and integral of a function given above are not

entirely satisfactory: the series for
∫
dx f(x) is not a Fourier series, and if ck = O(k−1)

as k → ∞ the convergence of the series given for f′(x) is problematical and the series

is certainly not useful.

Integration

The first difficulty may be cured by forming a definite integral and using the known

Fourier series for x. The definite integral is∫ x

0

dx f(x) = xc0 + i

∞∑
k = −∞
k 6= 0

ck

k

(
e−ikx − 1

)
,

but

x = 2

∞∑
k=1

(−1)k−1

k
sin kx = i

∞∑
k = −∞
k 6= 0

(−1)k−1

k
e−ikx.

Substituting this expression for x gives∫ x

0

dx f(x) = 2

∞∑
k=1

=(ck)

k
+ i

∞∑
k = −∞
k 6= 0

(
ck − (−1)kc0

k

)
e−ikx. (8.31)

If f(x) is real the alternative, real, form for the integral is∫ x

0

dx f(x) =

∞∑
k=1

bk

k
+

∞∑
k=1

{
ak − (−1)ka0

k
sin kx− bk

k
cos kx

}
, (8.32)

where 2ck = ak + ibk , k ≥ 1 and a0 = 2c0.
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Exercise 8.15
Use equation 8.32 to integrate the Fourier series for x to show that

x2 =
π2

3
− 4

∞∑
k=1

(−1)k−1 cos kx

k2
.

Explain why the Fourier series for x on (−π, π) depends only on sine functions and that

for x2 only upon cosine functions.

Differentiation

For many differentiable functions the leading term in the asymptotic expansion of ck is

O(k−1); the reason for this is given in the previous section, particularly equation 8.24.

Then the convergence of the series 8.30 for f′(x) is questionable even though f′(x) may

have a Fourier series expansion. Normally ck = O(k−1) because the periodic extension

of f(x) is discontinuous at x = ±π, then we expect the Fourier coefficients of f′(x)
to also be O(k−1), not O(1) as suggested by equation 8.30. We now show how this is

achieved.

The analysis of section 8.7 leads us to assume that for large k

ck = (−1)k
c∞
k

+ O(k−2), c∞ =
1

2πi
(f(π) − f(−π)) ,

so we define a constant c by the limit

c = lim
k→∞(−1)kkck

and consider the Fourier series

g(x) = −i
∞∑

k=−∞

(
kck − (−1)kc

)
e−ikx

which is clearly related to the series 8.30. With the assumed behaviour of ck , the Fourier

components of this series are O(k−1). Now integrate this function using equation 8.31:∫ x

0

du g(u) = f(x) − 2

∞∑
k=1

1

k
<(kck − (−1)kc).

Thus g(x) = f′(x) and we have found the Fourier series of f′(x) that converges at the

same rate as the Fourier series of f(x), that is

df

dx
= g(x) = −i

∞∑
k=−∞

(
kck − (−1)kc

)
e−ikx. (8.33)

If f(x) is real, <(c) = 0 and the real form of the Fourier series is

df

dx
= −b

2
+

∞∑
k=1

{
(kbk − (−1)kb) cos kx− kak sin kx

}
,

where b = −2ic = limk→∞(−1)kkbk and ak + ibk = 2ck .
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Exercise 8.16
Using the Fourier series

x3 = 2

∞∑
k=1

(−1)k−1 k
2π2 − 6

k3
sin kx, |x| < π,

and the above expression for the differential of a Fourier series, show that

x2 =
π2

3
− 4

∞∑
k=1

(−1)k−1

k2
cos kx, |x| ≤ π.

Explain why the Fourier coefficients for x3 and x2 are respectively O(k−1) and O(k−2) as

k → ∞.

Exercise 8.17
Consider the function

f(x) =

∞∑
k=2

(−1)k
k

k2 − 1
sin kx =

i

2

∑
|k|≥2

(−1)k
k

k2 − 1
e−ikx.

Show that the Fourier series of f′(x) is

f′(x) = −1

2
+ cos x+

∞∑
k=2

(−1)k
cos kx

k2 − 1
.

Find also the series for f′′(x) and hence show that f(x) = 1
4
sin x+ 1

2
x cos x.

Exercise 8.18

(i) If f(x) = eax, use the fact that f′(x) = af(x) together with equation 8.33 to show that the

Fourier coefficients of f(x) on the interval (−π, π) are

ck =
i(−1)kc

a+ ik

for some number c.

Show directly that the mean of f′(x) is (f(π) − f(−π))/2π and use this to determine the

value of c, hence showing that

eax =
sinh πa

π

∞∑
k=−∞

(−1)k

a+ ik
e−ikx.

(ii) By observing that e2ax = eaxeax, or otherwise, use the Fourier series for eax to show that

1 + 2a2

∞∑
k=1

1

a2 + k2
=

πa

tanh πa
,

and by considering the small a expansion deduce that, for some numbers fn,

∞∑
k=1

1

k2n
= fnπ

2n, n = 1, 2, . . . .



284 Fourier series and systems of orthogonal functions

8.9 Fourier series on arbitrary ranges

The Fourier series of a function f(x) over a range a ≤ x ≤ b, different from (−π, π), is

obtained using the preceding results and by defining a new variable

w =
2π

b− a

(
x− b+ a

2

)
, x =

b+ a

2
+
b− a

2π
w, (8.34)

which maps −π ≤ w ≤ π onto a ≤ x ≤ b. Then it follows that the function f(x(w)) of

w can be expressed as a Fourier series on −π ≤ w ≤ π,

f(x(w)) =

∞∑
k=−∞

cke
−ikw and so f(x) =

∞∑
k=−∞

dk exp

(
−i 2πk

b− a
x

)
,

where

dk =
1

b− a

∫ b

a

dx f(x) exp

(
2πik

b− a
x

)
, (8.35)

this last relation following from the definition of ck and the transformation 8.34.

Exercise 8.19

Show that the Fourier series of f(x) = cosh x on the interval (−L, L) is

cosh x =
sinhL

L

(
1 + 2

∞∑
k=1

(−1)kL2

L2 + π2k2
cos

(
πkx

L

))
, −L ≤ x ≤ L.

From the form of this Fourier series we observe that the Fourier components are small

only if k � L; thus if L is large many terms of the series are needed to provide an accurate

approximation, as may be seen by comparing graphs of partial sums of the series with

cosh x on −L < x < L for various values of L.

8.10 Sine and cosine series

Fourier series of even functions, f(x) = f(−x), comprise only cosine terms, and Fourier

series of odd functions, f(x) = −f(−x), comprise only sine terms. This fact can be used

to produce cosine or sine series of any function over a given range which we shall take

to be (0, π).

For any function f(x) an odd extension, fo(x), may be produced as follows:

fo(x) =

{ −f(−x), x < 0,

f(x), x ≥ 0.

Figure 8.6 shows the odd extension of the function f(x), depicted in figure 8.5.
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Figure 8.5 Original function.
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Figure 8.6 Odd extension.

We would normally use this extension when f(0) = 0 so that fo(x) is continuous at

x = 0. Then the Fourier series of fo(x) on (−π, π) contains only sine functions and we

have, from equation 8.15,

f(x) =

∞∑
k=1

bk sin kx, 0 < x ≤ π, with bk =
2

π

∫ π

0

dx f(x) sin kx, k = 1, 2, . . . ,

the latter relation following from equation 8.13. This series is often called the half-range

Fourier sine series.

Similarly we can extend f(x) to produce an even function,

fe(x) =

{
f(−x), x < 0,

f(x), x ≥ 0,

an example of which is shown in figure 8.8.
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Figure 8.7 Original function.
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Figure 8.8 Even extension.

The even extension produces a Fourier series containing only cosine functions, to give

the half-range Fourier cosine series

f(x) =
1

2
a0 +

∞∑
k=1

ak cos kx, 0 < x ≤ π,

where

ak =
2

π

∫ π

0

dx f(x) cos kx, k = 0, 1, . . . .
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Exercise 8.20

Show that

x = 2

∞∑
k=1

(−1)k−1

k
sin kx, 0 ≤ x < π,

and

x =
π

2
− 4

π

∞∑
k=1

cos(2k − 1)x

(2k − 1)2
, 0 ≤ x ≤ π.

Explain why the even extension converges more rapidly.

Use Maple to compare, graphically, the partial sums of these two approximations with

the exact function.

Exercise 8.21

Show that

sin x =
4

π

{
1

2
−

∞∑
k=1

cos 2kx

4k2 − 1

}
, 0 ≤ x ≤ π,

and deduce that

∞∑
k=1

(−1)k−1

4k2 − 1
=
π

4
− 1

2
.

8.11 The Gibbs phenomenon

The Gibbs phenomenon occurs in the Fourier series of any discontinuous function,

such as that considered in exercise 8.9, but before discussing the mathematics behind

this strange behaviour we give the following description of its discovery, taken from

Lanczos (1966, section 10).

The American physicist Michelson† invented many physical instruments of very high

precision. In 1898 he constructed a harmonic analyser that could compute the first

80 Fourier components of a function described numerically; this machine could also

construct the graph of a function from the Fourier components, thus providing a check

on the operation of the machine because, having obtained the Fourier components

from a given function, it could be reconstructed and compared with the original.

Michelson found that in most cases the input and synthesised functions agreed well.

† A. A. Michelson (1852–1931) was born in Prussia. He moved to the USA when two years old and is
best known for his accurate measurements of the speed of light, which was his life long passion; in
1881 he determined this to be 186 329 miles/sec and in his last experiment, finished after his death,
obtained 186 280 miles/sec, the current value for the speed of light in a vacuum is 186 282.397 miles/sec

(2.997 924 58 × 108 m/sec). In 1887, together with Morley, he published results showing that there was no
measurable difference between the speed of light when the Earth was moving towards or away from a
source: this result was crucial in falsifying the theories of the aether and in Einstein’s formulation of the
special theory of relativity.


